RESUMO DOS RESULTADOS DA ARGAMASSA THERMO X

NBR 13281:2005 – Argamassa para assentamento e revestimento de paredes

NBR 15575:2013 – Partes 3 e 4 – Sistemas de Pisos e Vedações Verticais Internas e Externas

Ensaio	Relatório de Ensaio	Laboratório	Data	Método	Resultado	Classificação	Laudo
Determinação do índice de consistência	REV 313.260/1/A/18	FALCÃO BAUER RBLE – CRL 0003	21/11/2018	NBR 13.276:2016	I _c = 257 mm Teor de Água= 72%	n/a	n/a
Retenção de Água (%)	REV 313.260/2/A/18	FALCÃO BAUER RBLE – CRL 0003	21/11/2018	NBR 13.277:2005	84%	U3 (80 a 90%)	APROVADO
Determinação da densidade de massa e Teor de ar incorporado	REV 313.260/3/A/18	FALCÃO BAUER RBLE – CRL 0003	21/11/2018	NBR 13.278:2005	D= 1332 kg/m³ Teor de Ar= 54%	D2 (1200 a 1600 kg/m³)	APROVADO
Resistência a tração na flexão e a Compressão	REV 313.260/4/A/18	FALCÃO BAUER RBLE – CRL 0003	21/11/2018	NBR 13.279:2005	R_f médio= 1,5 MPa Desvio R_f (< 0,3 MPa) = 0,0 MPa R_c médio= 2,9 MPa Desvio R_c (< 0,5 MPa) = 0,1 MPa	R3 (1,5 a 2,7 MPa) P3 (2,5 a 4,5 MPa)	APROVADO
Determinação da densidade de massa aparente no estado endurecido	REV 313.260/5/A/18	FALCÃO BAUER RBLE – CRL 0003	21/11/2018	NBR 13.280:2005	814 kg/m³	M1 (≤ 1200 kg/m³)	APROVADO
Resistência Potencial de Aderência a Tração	REV 313.450/18	FALCÃO BAUER RBLE – CRL 0003	03/12/2018	NBR 15.258:2005 ADAPATADO COM PLACA CERÂMICA	R _{pt} médio= 0,4 MPa 100% Ruptura na argamassa (A)	A3 (≥ 0,30 MPa)	APROVADO
Condutividade Térmica	1 040 360 203	IPT RBLE – CRL 0111	11/12/2011	ASTM C 177:2004	0,20 a 0,25 (W/m.K)	n/a	n/a
Coeficiente de Capilaridade	REV 314.320/18	FALCÃO BAUER RBLE – CRL 0003	26/12/2018	NBR 15.259:2005	2,14 (g/dm² min ½)	C6 (>10 g/dm2 min ^½)	APROVADO
Isolação Acústica Argamassa (Bloco Cerâmico 6 furos L=13; H=11; C= 24 cm com 2cm de revestimento com THERMO X em apenas 1 face)	1 083 144 2013	IPT RBLE – CRL 0111	09/08/2016	ISO 10140 – 3 ISO 717-1 :2013	Rw (C; Ctr) 40 (-1; -3) dB Obs: Apenas 1 face com 2cm Thermo X	n/a	n/a
Ruído de Impacto (Laje Mista com 10cm EPS, 10cm Capa de Concreto, Contrapiso de 3cm THERMO X, forro gesso liso 1 cm)	REL-AC.ACUED.BB- SOF01.NAT00	NATURALMENTE	26/07/2016	EN ISO 16283-2, ISO 717-1 ISO 717-2 NBR 15575:2013	Classificação de acordo com a ISO 717-1 LnT, w (C; Ctr) = 75 (-6) dB	n/a	APROVADO

APLICAÇÃO:

- 1. ISOLAMENTO ACÚSTICO DE PISOS RUÍDO DE IMPACTO DE PISOS LAJES MISTAS
- 2. ISOLAMENTO ACÚSTICO DE PISOS RUÍDO DE IMPACTO DE PISOS LAJES MACIÇAS
- 3. ISOLAMENTO TÉRMICO DE COBERTURAS LAJES MISTAS IMPERMEABILIZADAS
- 4. ISOLAMENTO TÉRMICO DE COBERTURAS LAJES MACIÇAS IMPERMEABILIZADAS
- 5. ISOLAMENTO TÉRMICO DE COBERTURAS LAJES MISTAS COM TELHADO
- 6. ISOLAMENTO TÉRMICO DE COBERTURAS LAJES MACIÇAS COM TELHADO
- 7. ISOLAMENTO TÉRMICO DE FACHADAS ENMBOÇO
- 8.
- 9. Revestimento térmico e acústico de paredes internas e externas com ou sem camada de acabamento (p. ex. pintura ou placas cerâmicas)
- 10. Isolamento de pisos contra ruído de impacto contrapiso com 2 a 3 cm de espessura. LnT, w (C; Ctr) = 75 (-6) dB (máx 80dB NBR 15575:2013)
- 11. **Isolamento térmico de coberturas com telhados não ventilados**, espessura mínima de 3 cm, para as Regiões Bioclimáticas 3 a 8 com Resistência Térmica Total do Ático Rar ≥ 0,29 (m2.K/W), em conformidade com as diretrizes da NBR 15220:2015 abaixo.

ISOLAMENTO TÉRMICO DE COBERTURAS

Conforme NBR 15220-2:2015 Itens 5.3 – Componentes com Câmara de Ar em Coberturas:

- São considerados dois tipos de ventilação para as câmaras de ar, pouco ou muito ventiladas segundo sua posição.
- Em condições de verão (ganho de calor), a resistência térmica da câmara de ar ventilada deve ser igual à da câmara de ar não ventilada e obtida da tabela B.1.
- A ventilação do ático em regiões quentes é desejável e recomendável. Isto aumenta a resistência térmica da câmara de ar e, consequentemente, reduz a transmitância térmica e os ganhos de calor.
- Para regiões com estação fria (inverno) a ventilação do ático provoca perdas de calor pela cobertura, o que não é desejável.

Para as **Zonas Bioclimáticas 3 a 8**, região de estações quentes predominante e câmara de ar não ventilada, será necessário aumentar a Resistência Térmica (Rar) de 0,14 (m².K/W) para o mínimo de 0,29 (m².K/W) para se igualar a uma câmara ventilada, conforme Tabela B 1 - NBR 15220-2:2015.

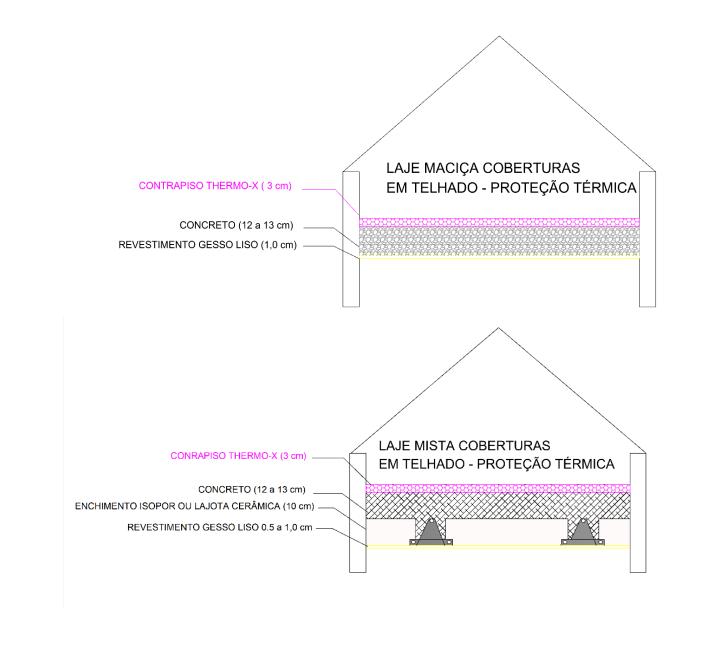
Tabela B.1 — Resistência térmica de câmaras de ar não ventiladas, com largura muito maior que a espessura

		Re	sistência térmica m².K/W	a R _{ar}	
Natureza da	Espessura "e" da	Direção do fluxo de calor			
superfície da	câmara de ar	Horizontal	Ascendente	Descendente	
câmara de ar	cm	Ŷ	Ŷ		
Superficie de alta	1,0 ≤ e ≤ 2,0	0,14	0,13	0,15	
emissividade	2,0 < e ≤ 5,0	0,16	0,14	0,18	
ε > 0,8	e > 5,0	0,17	0,14	0,21	
Superficie de baixa	1,0 ≤ e ≤ 2,0	0,29	0,23	0,29	
emissividade	2,0 < e ≤ 5,0	0,37	0,25	0,43	
ε < 0,2	e > 5,0	0,34	0,27	0,61	

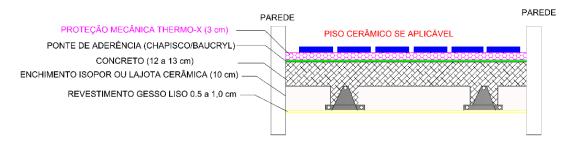
NOTAS

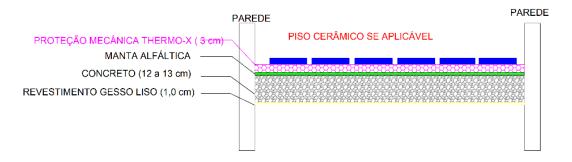
- 1 ε é a emissividade hemisférica total.
- 2 Os valores para câmaras de ar com uma superfície refletora só podem ser usados se a emissividade do superfície for controlada e previsto que a superfície continue limpa, sem pó, gordura ou água de condensação.
- 3 Para coberturas, recomenda-se a colocação da superficie refletora paralelamente ao plano das telhas (exemplo C.6 do anexo C); desta forma, garante-se que pelo menos uma das superficies - a inferior continuará limpa, sem poeira.
- 4 Caso, no processo de cálculo, existam câmaras de ar com espessura inferior a 1,0 cm, pode-se utilizar o valor mínimo fornecido por esta tabela.

Com base nestas informações, o **contrapiso sobre a laje com Argamassa Térmica THERMO X** deve ser de no mínimo **3cm de espessura**, o que equivale a uma Resistência Térmica 0,15 m².K/W (vide cálculo abaixo), chegando numa Resistência Térmica Total do ático Ra = 0,14 + 0,15 = **0.29** (m².K/W).

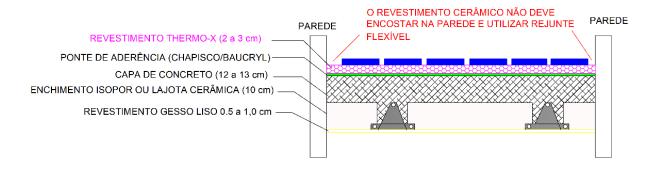

- Espessura: 3 cm (0,03 m)
- Condutividade Térmica: 0,20 (W/m.K)
- Resistência Térmica = Espessura/ Condutividade Térmica = 0,03/0,25 = 0,15 m².K/W
- Resistência Térmica Total do Ático Rar = 0,14 (Tab. B1) + 0,15 = 0.29 (m².K/W)

Tal	bela 2 – Con	dutividade	e térmica
Ter	mperaturas (°	Condutividade térmica	
Face quente	Face fria	Média	(W/(m.K))
35,5	15,1	25,3	0,20
85,1	65,0	75,0	0,25

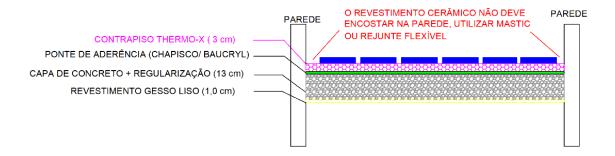

Condutividade da Argamassa THERMO X – Relatório IPT nº Relatório 1 040 360 203


Argamassa THERMO X

LAJE MISTA IMPERMEABILIZADA PROTEÇÃO TÉRMICA COBERTURA



LAJE MACIÇA IMPERMEABILIZADA PROTEÇÃO TÉRMICA COBERTURA



ISOLAMENTO ACÚSTICO DE PISOS - RUÍDO DE IMPACTO DE PISOS

LAJE MISTA

LAJE MACIÇA

Obs.: Para atender Ruido Aéreo DnTw≥45dB a camada estrutural deve ter no mínimo 13 cm conforme Catálago HIS Catalago HIS - Piso 1 - SPIS-LCA-002-R00